16.5: Non-Mendelian Inheritance (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    30746
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Family Portrait

    This photo of a South African family shows some of the variations that exist in human skin color. The color of human skin can range from very light to very dark with every possible gradation in between. As you might expect, the skin color trait has a more complex genetic basis than just one gene with two alleles, which is the type of simple trait that Mendel studied in pea plants. Like skin color, many other human traits have more complicated modes of inheritance than Mendelian traits. Such modes of inheritance are called non-Mendelian inheritance, and they include inheritance of multiple allele traits, traits with codominance or incomplete dominance, and polygenic traits, among others, all of which are described below.

    16.5: Non-Mendelian Inheritance (2)

    Multiple Allele Traits

    The majority of human genes are thought to have more than two normal versions or alleles. Traits controlled by a single gene with more than two alleles are called multiple allele traits. An example is ABO blood type. Your blood type refers to which of certain proteins called antigens are found on your red blood cells. There are three common alleles for this trait, which are represented by the letters IA, IB, and i.

    Table \(\PageIndex{1}\): ABO Blood Group
    Genotype Phenotype (blood type)
    IAIA A
    IAi A
    IBIB B
    IBi B
    ii O
    IAIB AB

    As shown in the table below, there are six possible ABO genotypes because the three alleles, taken two at a time, result in six possible combinations. The IA and IB alleles are dominant to the i allele. As a result, both IAIA and IAi genotypes have the same phenotype, with the A antigen in their blood (type A blood). Similarly, both IBIB and IBi genotypes have the same phenotype, with the B antigen in their blood (type B blood). No antigen is associated with the i allele, so people with the ii genotype have no antigens for ABO blood type in their blood (type O blood).

    Codominance

    Look at the genotype IAIB in the ABO blood group table. Alleles IA and IB for ABO blood type are neither dominant nor recessive to one another. Instead, they are codominant to each other. Codominance occurs when two alleles for a gene are expressed equally in the phenotype of heterozygotes. In the case of ABO blood type, IAIB heterozygotes have a unique phenotype, with both A and B antigens in their blood (type AB blood).

    Incomplete Dominance

    Another relationship that may occur between alleles for the same gene is incomplete dominance. This occurs when the dominant allele is not completely dominant, so an intermediate phenotype results in heterozygotes who inherit both alleles. Generally, this happens when the two alleles for a given gene both produce proteins but one protein is not functional. As a result, the heterozygote individual produces only half the amount of normal protein as is produced by an individual who is hom*ozygous for the normal allele.

    An example of incomplete dominance in humans is Tay Sachs disease. The normal allele for the gene, in this case, produces an enzyme that is responsible for breaking down lipids. A defective allele for the gene results in the production of a nonfunctional enzyme. Heterozygotes who have one normal and one defective allele produce half as much functional enzyme as the normal hom*ozygote, and this is enough for normal development. However, hom*ozygotes who have only defective alleles produce only the nonfunctional enzyme. This leads to the accumulation of lipids in the brain beginning in utero, which causes significant brain damage. Most individuals with Tay Sachs disease die at a young age, typically by the age of five years.

    Polygenic Traits

    Many human traits are controlled by more than one gene. These traits are called polygenic traits. The alleles of each gene have a minor additive effect on the phenotype. There are many possible combinations of alleles, especially if each gene has multiple alleles. Therefore, a whole continuum of phenotypes is possible.

    16.5: Non-Mendelian Inheritance (3)

    An example of a human polygenic trait is adult height. Several genes, each with more than one allele, contribute to this trait, so there are many possible adult heights. For example, one adult’s height might be 1.655 m (5.430 feet), and another adult’s height might be 1.656 m (5.433 feet). Adult height ranges from less than 5 feet to more than 6 feet, with males being somewhat taller than females on average. The majority of people fall near the middle of the range of heights for their sex, as shown in the graph in Figure \(\PageIndex{2}\).

    Environmental Effects on Phenotype

    Many traits are affected by the environment as well as by genes. This may be especially true for polygenic traits. For example, adult height might be negatively impacted by poor diet or illness during childhood. Skin color is another polygenic trait. There is a wide range of skin colors in people worldwide. In addition to differences in skin color genes, differences in exposure to ultraviolet (UV) light cause some of the variations. As shown in Figure \(\PageIndex{3}\), exposure to UV light darkens the skin.

    16.5: Non-Mendelian Inheritance (4)

    Pleiotropy

    Some genes affect more than one phenotypic trait. This is called pleiotropy. There are numerous examples of pleiotropy in humans. They generally involve important proteins that are needed for the normal development or functioning of more than one organ system. An example of pleiotropy in humans occurs with the gene that codes for the main protein in collagen, a substance that helps form bones. This protein is also important in the ears and eyes. Mutations in the gene result in problems not only in bones but also in these sensory organs, which is how the gene's pleiotropic effects were discovered.

    Another example of pleiotropy occurs with sickle cell anemia. This recessive genetic disorder occurs when there is a mutation in the gene that normally encodes the red blood cell protein called hemoglobin. People with the disorder have two alleles for sickle-cell hemoglobin, so named for the sickle shape (Figure \(\PageIndex{4}\)) that their red blood cells take on under certain conditions such as physical exertion. The sickle-shaped red blood cells clog small blood vessels, causing multiple phenotypic effects, including stunting of physical growth, certain bone deformities, kidney failure, and strokes.

    16.5: Non-Mendelian Inheritance (5)

    Epistasis

    Some genes affect the expression of other genes. This is called epistasis. Epistasis is similar to dominance, except that it occurs between different genes rather than between different alleles for the same gene.

    Albinism is an example of epistasis. A person with albinism has virtually no pigment in the skin. The condition occurs due to an entirely different gene than the genes that encode skin color. Albinism occurs because a protein called tyrosinase, which is needed for the production of normal skin pigment, is not produced due to a gene mutation. If an individual has albinism mutation, he or she will not have any skin pigment, regardless of the skin color genes that were inherited.

    Feature: My Human Body

    Do you know your ABO blood type? In an emergency, knowing this valuable piece of information could possibly save your life. If you ever need a blood transfusion, it is vital that you receive blood that matches your own blood type. Why? If the blood transfused into your body contains an antigen that your own blood does not contain, antibodies in your blood plasma (the liquid part of your blood) will recognize the antigen as foreign to your body and cause a reaction called agglutination. In this reaction, the transfused red blood cells will clump together, as shown in the image below. The agglutination reaction is serious and potentially fatal.

    16.5: Non-Mendelian Inheritance (6)

    Knowing the antigens and antibodies present in each of the ABO blood types will help you understand which type(s) of blood you can safely receive if you ever need a transfusion. This information is shown in the table below for all of the ABO blood types. For example, if you have blood type A, this means that your red blood cells have the A antigen and that your blood plasma contains anti-B antibodies. If you were to receive a transfusion of type B or type AB blood, both of which have the B antigen, your anti-B antibodies would attack the transfused red blood cells, causing agglutination.

    Table \(\PageIndex{2}\): Antigens and antibodies in ABO blood types
    Characteristics Type A Type B Type AB Type O
    Red Blood Cell 16.5: Non-Mendelian Inheritance (7) 16.5: Non-Mendelian Inheritance (8) 16.5: Non-Mendelian Inheritance (9) 16.5: Non-Mendelian Inheritance (10)
    Antibodies in Plasma

    16.5: Non-Mendelian Inheritance (11)

    Anti-B

    16.5: Non-Mendelian Inheritance (12)

    Anti-A

    None

    16.5: Non-Mendelian Inheritance (13)

    Anti-A and Anti-B

    Antigens in Red Blood Cells

    16.5: Non-Mendelian Inheritance (14)

    A antigen

    16.5: Non-Mendelian Inheritance (15)

    B antigens

    16.5: Non-Mendelian Inheritance (16)

    A and B antigens

    None

    You may have heard that people with blood type O are called universal donors and that people with blood type AB are called universal recipients. People with type O blood have neither A nor B antigens in their blood, so if their blood is transfused into someone with a different ABO blood type, it causes no immune reaction. In other words, they can donate blood to anyone. On the other hand, people with type AB blood have no anti-A or anti-B antibodies in their blood, so they can receive a transfusion of blood from anyone. Which blood type(s) can safely receive a transfusion of type AB blood, and which blood type(s) can be safely received by those with type O blood?

    Review

    1. What is non-Mendelian inheritance?
    2. Explain why the human ABO blood group is an example of a multiple allele trait with codominance.
    3. What is incomplete dominance? Give an example of this type of non-Mendelian inheritance in humans.
    4. Explain the genetic basis of human skin color.
    5. How may the human trait of adult height be influenced by the environment?
    6. Define pleiotropy, and give a human example.
    7. What is the difference between pleiotropy and epistasis?
    8. Which of the following terms best matches each trait description? Choose only the one term that best fits each trait. (codominance; multiple allele trait; Mendelian trait; polygenic trait)
      1. A trait controlled by four genes.
      2. A trait where each allele of a heterozygote makes an equal contribution to the phenotype.
      3. A trait controlled by a single gene that has three different versions.
      4. A trait controlled by a single gene where one allele is fully dominant to the only other allele.
    9. People with type AB blood have:
      1. anti-O antibodies
      2. anti-A and anti-B antibodies
      3. A and B antigens
    10. True or False. People with type O blood cannot receive a blood transfusion from anyone besides others with type O blood.
    11. True or False. People with type O blood can be heterozygous for this trait.

    Explore More

    https://bio.libretexts.org/link?16764#Explore_More

    To learn more about non-Mendelian Inheritance, check out this video:

    Attributions

    1. Family by Henry M. Trotter, released into the public domain via Wikimedia Commons
    2. Adult height graph by Mariana Ruiz Villarreal (LadyofHats), CC BY-NC 3.0 for CK-12 Foundation
    3. Skin tanning by Onetwo1, licensed CC BY 3.0 via Wikimedia Commons
    4. Sickle cells by OpenStax College, licensed CC BY 3.0 via Wikimedia Commons
    5. Type A Blood, public domain via Wikimedia Commons
    6. Blood type table based on image of ABO Blood type, public domain via Wikimedia Commons
    7. Text adapted from Human Biology by CK-12 licensed CC BY-NC 3.0
    16.5: Non-Mendelian Inheritance (2024)

    FAQs

    Which is a non-Mendelian trait answers? ›

    Non-Mendelian traits are traits that are not passed down with dominant and recessive alleles from one gene. Polygenic traits are considered non-Mendelian because their alleles are located on more than one gene which allows for more alleles and phenotypes. Examples of polygenic traits are hair color and height.

    What is a non-Mendelian inheritance? ›

    Non-Mendelian inheritance is any pattern in which traits do not segregate in accordance with Mendel's laws. These laws describe the inheritance of traits linked to single genes on chromosomes in the nucleus. In Mendelian inheritance, each parent contributes one of two possible alleles for a trait.

    What is non-Mendelian inheritance quizlet? ›

    Non-Mendelian Inheritance. refers to any pattern of inheritance in which traits do not segregate in accordance with Mendel's laws (ex. incomplete dominance, codominance, multiple alleles, polygenic traits, sex-linked traits) Incomplete Dominance.

    What is the normal Mendelian inheritance? ›

    Mendelian inheritance refers to an inheritance pattern that follows the laws of segregation and independent assortment in which a gene inherited from either parent segregates into gametes at an equal frequency.

    What is an example of a non-Mendelian disorder? ›

    Is Down's syndrome a Non-Mendelian inheritance type of genetic disorder? Yes, Down's syndrome (trisomy of 21st chromosome pair) is known to not follow Mendelian laws of inheritance and is, therefore, a Non-Mendelian trait found in human beings.

    What is an example of a Mendelian inheritance? ›

    Some other human traits that have a Mendelian inheritance pattern are Huntington's disease and wet versus dry ear wax. You may have heard about other human traits that were previously thought to be Mendelian, such as dimples, a widow's peak hairline, hitchiker's thumb, and the ability to roll your tongue.

    Which has the most control of traits and inheritance? ›

    Genes have the most control of traits and inheritance.

    They are the basic unit of inheritance. Some traits are controlled by a single gene while other traits are controlled by multiple genes. Each gene codes for a single polypeptide and these polypeptides are the proteins that control traits.

    Which is the trait for purple flowers? ›

    Answer & Explanation

    In this case, the trait is the color of the flower. The genotypes are represented by the letters P and p. The letter P is used to represent the dominant allele, which results in purple flowers, while the letter p is used to represent the recessive allele, which results in white flowers.

    What are multiple alleles? ›

    Multiple alleles just means that more than 2 exist. For example, there are 3 alleles for blood type in existence, but healthy individuals will only inherit 2.

    Are Mendelian diseases rare? ›

    Approximately 80% of all rare diseases are genetic in origin, and most of these diseases are monogenic/Mendelian [1,2]. Rare diseases are individually rare, but according to the estimate, there are 400 million people all over the world suffering from around 7000 different rare diseases [1,3,4,5].

    Does Mendelian inheritance apply to humans? ›

    Human genes do follow Mendelian laws. However, humans are not peas. Although I tried to explain eye color inheritance as a single gene system, scientists now believe that two or three genes are involved in eye color determination./dnaftb/concept_13/con13anigene.

    Which four are non-Mendelian genetics? ›

    Most traits actually do not follow Mendel's laws of dominant and recessive inheritance. The inheritance of these traits is referred to as Non-Mendelian genetics. A few important Non-Mendelian inheritance patterns are multiple alleles, sex-linked traits, incomplete dominance, and codominance.

    What are the 4 non-Mendelian genetics? ›

    Key terms
    TermMeaning
    CodominancePattern of heredity in which both alleles are simultaneously expressed in the heterozygote
    Multiple allelesA gene that is controlled by more than two alleles
    PleiotropyWhen one gene affects multiple characteristics
    Lethal alleleAllele that results in the death of an individual
    2 more rows

    Which is a non-Mendelian trait, a trait controlled by many genes? ›

    Polygenic Trait

    A polygenic trait is a characteristic, such as height or skin color, that is influenced by two or more genes. Because multiple genes are involved, polygenic traits do not follow the patterns of Mendelian inheritance.

    Is color blindness non-Mendelian? ›

    Yes. Color blindness is a Mendelian disorder. It is the inability to distinguish between colors, especially between primary colors like red, blue, and green. Color blindness is caused by a genetic flaw passed down from a parent's defective genes to their children.

    Is epistasis non-Mendelian? ›

    Epistasis is a form on non-Mendelian inheritance in which one gene is capable of interfering with expression of another. This is often found associated with gene pathways where the expression of one gene is directly dependent on the presence or absence of another gene product within the pathway.

    References

    Top Articles
    Latest Posts
    Article information

    Author: Rubie Ullrich

    Last Updated:

    Views: 6300

    Rating: 4.1 / 5 (72 voted)

    Reviews: 95% of readers found this page helpful

    Author information

    Name: Rubie Ullrich

    Birthday: 1998-02-02

    Address: 743 Stoltenberg Center, Genovevaville, NJ 59925-3119

    Phone: +2202978377583

    Job: Administration Engineer

    Hobby: Surfing, Sailing, Listening to music, Web surfing, Kitesurfing, Geocaching, Backpacking

    Introduction: My name is Rubie Ullrich, I am a enthusiastic, perfect, tender, vivacious, talented, famous, delightful person who loves writing and wants to share my knowledge and understanding with you.